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We show that in mesoscopic two-dimensional electron gas systems, quantum interference caused by prede-
signed nanopatterns can enhance the Hall effect by up to 500%. A quality factor Q is defined which optimizes
the ratio of the Hall voltage to longitudinal voltage. Genetic algorithm and the Landauer-Büttiker formalism
were used to search for the potential configuration that can achieve a large Q. We propose some realistic
nanopatterns to realize this effect.
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I. INTRODUCTION

Quantum Hall effect shows that electron’s quantum wave
nature can alter its classical Hall character under a strong
magnetic field.1 But can such wave characteristics persist in
the limit of B→0? Some time ago it was shown that the
giant Hall effect �GHE� in magnetic materials can persist
even in the limit where magnetization has reached saturation
and therefore cannot play a role.2 It follows that there could
be some alternative scenario for the enhancement of the Hall
effect that are distinct from the usual GHE.2,3 Motivated by
this finding, subsequent experimental and theoretical studies
on the nonmagnetic CuSiO2 composites have found that
quantum interference may indeed play a crucial role in en-
hancing the Hall coefficient.4,5 This conclusion was sup-
ported by the fact that only when the size of the metallic
granules is much smaller than the coherent length of the
electron, e.g., in the low-temperature regime �so that the
electron coherence length can reach its saturation value�, can
this GHE occur. Most dramatically, the effect vanishes in
annealed samples, when the size of the metallic granules
exceeds the quantum coherence length. Together with the
fact that all the GHE was observed in the vicinity of the
percolation threshold, it was concluded that the GHE arises
from the quantum interference effect in the percolation geo-
metric setting. By using mesoscopic transport calculations in
the microscopic regions �within a coherence length� to evalu-
ate the local Hall conductances, Wan and Sheng5 built a
model in which the local �mesoscopic� Hall conductance ten-
sors thus obtained served as the inputs to the macroscopic
classical electric network calculations. The results show ex-
cellent agreement with the experiment data.

The random nature of the composite geometry means that
the GHE is manifest only in a statistically averaged sense. In
this paper, we show in mesoscopic two-dimensional �2D�
electron gas systems one can utilize predesigned nanostruc-
tures to maximize the Hall effect in the limit of small mag-
netic field. Genetic algorithm was used to search the optimal
2D structure pattern. It is shown that for certain nanopat-
terned configurations the Hall coefficient can be enhanced up
to 300%–500% in 2D electron systems �with parameters rel-
evant to semiconductor heterostructures�. By using designed
nanostructures, the case for quantum interference Hall effect

can be much better verified, as there can be a direct correla-
tion between the nanostructure and the measured Hall char-
acteristics.

In what follows, the Hall effect in the mesoscopic context,
i.e., in nanostructures, is described in Sec. II together with its
calculational approach. In Sec. III we present the results on
the Hall effect in homogeneous mesoscopic samples in order
to set the stage for the consideration of patterned samples. In
Sec. IV the definition of a quality factor for measuring the
mesoscopic Hall effect is followed by pattern optimizations
to achieve maximum Hall-effect enhancement. A few opti-
mal nanopatterns are presented and their relevant parameter
values compared with those of the homogeneous sample�s�.

II. MESOSCOPIC HALL EFFECT

Our 2D electron gas system can be a semiconductor het-
erostructure, with a Fermi wavelength comparable to the size
of the nanopattern to be considered below. We would like to
evaluate the electronic transport behavior under crossed elec-
tric and magnetic fields in which the electron’s wave charac-
teristics are explicitly taken into account. For simplicity only
the square sample geometry will be considered, with four
sides connected to the four terminals as shown in Fig. 1. In
the following we first describe the calculation of the trans-
mission tensor �Tpq� between the terminals p and q. The
Landauer-Büttiker formula6 will be used to obtain sample’s
conductance tensor.

FIG. 1. �Color online� Geometry and the sample grid for the
four-terminal calculation.

PHYSICAL REVIEW B 79, 165307 �2009�

1098-0121/2009/79�16�/165307�10� ©2009 The American Physical Society165307-1

http://dx.doi.org/10.1103/PhysRevB.79.165307


A. Tij calculation in the four-terminal configuration

For the four-terminal system, the transmission coefficient
can be calculated by the mixed boundary matching method
in which the wave functions in the electrical terminal regions
are expressed as the superposition of �waveguide� eigen-
modes, and in the sample region by using the discrete basis
�defined at each grid node�.7 The values at the grid nodes and
the expansion coefficients are the unknowns. The relevant
equations are of two types: one is from the discretized
Schrödinger equation for each grid node, and the other is
from the boundary conditions at the interfaces between the
sample and the terminals. Figure 1 shows the geometry and
the sample grid for this four-terminal system.

The Schrödinger equation in the presence of a magnetic
field is given by

1

2m
�p� − eA� �2��r�� + V�r����r�� = E��r�� , �1�

where p� =−i��� and A� denotes the vector potential. The mag-

netic field may be expressed as B� =�� �A� . Here V�r�� is the
scalar �electric� potential. For simplicity, we set V�r��=0 in
the terminal areas with an infinite potential step defining ter-
minal’s confining boundaries, inside which the electronic
waves may be simply regarded as guided modes. In Eq. �1�,
E is the energy, e is the electron charge, and m is the electron
mass.

For terminals 1 and 3, we use the Landau gauge A�

= �By ,0 ,0� together with the waveguide solution �
=eik·x��y� in Eq. �1�. By using the separation of variables, we
obtain

−
d2��y�

dy2 + ��k − P · y�2 − k0
2���y� = 0, �2�

where P=eB /�.
We denote k�n� the eigenvalue and �n�y� the eigenfunc-

tion of Eq. �2� under the boundary condition ��0�=��a�=0,
where a denotes the terminal’s transverse width. To distin-
guish the two propagation directions in a magnetic field, two
sets of eigenvalues and eigenfunctions are used. In terminals
2 and 4, the wave function has the form ��2,4��x ,y�
=e�ik·y��x�, and a similar procedure is used to obtain the
eigenfunctions by using another gauge for the purpose of
variable separation. To ensure that the unitary gauge condi-

tion is satisfied for the vector potential A� throughout the
system, �n�x� must differ from �n�y� with an additional
�gauge� transformation factor exp�iPxy� �see Appendix A�.
Hence the eigenfunctions in terminal 2 and 4 are denoted
with two variables, e.g., �n��x ,y�. The details are given in
Appendix A. Here we write down the wave functions in the
terminal areas as

��1� = eikr�n0�·x�n0
�y� + �

n=1

N1

Ane−ikf�n�·x�n̄�y� , �3a�

��3� = �
n=1

N1

Bneikr�n�·�x−a��n�y� , �3b�

��2� = �
n=1

N1

Cne−ikr�n�·y�n̄��x,y� , �3c�

��4� = �
n=1

N1

Dneikf�n�·�y−a��n��x,y� , �3d�

where kr�n� and kf�n� stand for the rightward �downward�
and leftward �upward� eigenwavevectors, �n�y� and �n̄�y�
are the eigenfunctions for rightward and leftward waves in
terminals 1 and 3, respectively, and �n��x ,y� and �n̄��x ,y� are
the eigenfunctions for the upward and downward waves in
terminals 4 and 2, respectively. �An�, �Bn�, �Cn� and �Dn� are
the expansion coefficients. Equation �3a� expresses the inci-
dent wave in terminal 1, consisting of one single eigenmode
with mode index n0 and the reflected wave as the superposi-
tion of different eigenmodes with the expansion coefficients
�An�. Here N1 is total number of eigenmodes. From the dis-
crete sine transformation, we set N1=Na−2, which equals the
free grid nodes at the sample/terminal interface �Na is the
number of nodes on the grid boundary�. Equations �3b�–�3d�
have similar meanings.

In the middle sample area, the wave function is expressed
by discrete basis defined at each grid node. With the Landau

gauge A� = �By ,0 ,0�, Eq. �1� can be written as

−
�2

2m
�	�x −

ieB

�
y
2

+ �y
2�� + V�r��� = E� . �4�

In the sample area, we use the central difference format to
discretize the Laplacian

�2�i.j
S � ��i+1,j

S + �i−1,j
S + �i,j+1

S + �i,j−1
S − 4�i,j

S �/d2, �5�

where �i,j
S denotes the wave-function value at the node �i , j�.

Each grid cell is a square with size �x=�y =d, and d
=a / �Na−1�. In discretized form, Eq. �4� is given by �here we
use Pij to stand for �i,j

S �

Pi+1,j�1 − I · Cmj� + Pi−1,j�1 + I · Cmj� + Pi,j+1 + Pi,j−1

+ Pi,j�k0
2d2�i,j − 4 − Cm

2 j2� = 0, �6�

where Cm=eBd2 /�, �i,j =1−Vi,j /E, and “I” denotes the
imaginary unit.

For the computational grid, there are Na�Na nodes as
shown in Fig. 1. Along the x �or y� direction the node index
ranges from 1 to Na, corresponding to the points from �0,0�
to �a ,0� �or �0,a��. Equation �6� is used for all the non-
boundary grid nodes so there are a total of �Na−2�2 indepen-
dent equations in the grid area.

At the sample-terminal interfaces, we set up equations
from the connection conditions, which state that the wave
function and its derivative should be continuous. For ex-
ample, on the boundary x=0 �0�y�a� we have

��1�x=0 = �1,j
S , �7a�

�d��1�/dx�x=0 = ��2,j
S − �1,j

S �/d . �7b�

By substituting Eq. �3a� into Eq. �7�, we get
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�n0
�yj� + �

n=1

N1

An · �n̄�yj� = P1,j , �8a�

ikr�n0��n0
�yj� + �

n=1

N1

An · �− ikf�n�� · �n̄�yj� = �P2,j − P1,j�/d .

�8b�

For a more precise calculation, we find that �P2,j − P1,j� /d is
the approximation of d� /dx at x=0 with first-order accuracy,
but it is also the approximation of d� /dx at x=d /2 with
second-order accuracy. So the choice of boundary being at
x=d /2 would lead to better precision. Thus Eq. �8b� is modi-
fied to the form

ikr�n0� · eikr�n0�·d/2 · �n0
�yj�

+ �
n=1

N1

An · �− ikf�n�� · e−ikf�n�·d/2 · �n̄�yj�

= �P2,j − P1,j�/d . �8c�

Equations �8a� and �8c� are used for every discrete node at
the interface, with 2� j�Na−1. Hence there are 2�Na−2�
such equations.

On the other three sample-terminal interfaces we can also
write down these connection equations. As a result, there are
8�Na−2� connection equations. Together with the discretized
Schrödinger equation, the total number of equations is Nf
=8�Na−2�+ �Na−2�2. By accounting for the number of free
grid nodes in the sample area, Na

2−4 �except for the four
corner nodes�, and the number of the expansion coefficients,
the total number of unknowns is Nx=4N1+ �Na

2−4�=4�Na
−2�+ �Na

2−4�. It is easy to see that Nx=Nf.
All the equations are assembled into a large matrix form.

Since there are many zero elements in the matrix, the sparse
matrix technique can be used.8 After solving the equations,
the transmission coefficient of the system can be evaluated
�see Appendix B�.

Figure 2 shows two examples of the Tpq calculations in a
four-terminal system. Electron wave is incident from the left
terminal 1, scatters, and then exits through all the terminals.
The wave function �real part� is drawn as contours �left� and
as a three-dimensional �3D� plot �right�. It can be seen that
when there is no magnetic field �Fig. 2�a��, the wave function
is symmetric �T14=T12�; but when a magnetic field is applied
�Fig. 2�b��, the electron wave is bent downward due to the
Lorentz force. It is interesting to note that in Fig. 2�b�, al-
though the wave is bent toward terminal 2, the transmission
coefficients satisfy the inequality T14	T12, owing to the re-
flection at the right bottom corner of the sample. Because of

this reflection, more flux flows into terminal 4 than into ter-
minal 2. In the calculation the normalization of the transmis-
sion �reflection� coefficients is satisfied, i.e., T11+T12+T13
+T14�1, which serves as a check on the accuracy of the
calculation.

B. Conductance tensor evaluation

In a multiterminal mesoscopic system, the currents and
voltage in the terminals are related by the Landauer-Büttiker
formula6

Ip =
2e

h
�

q

Tpq�
p − 
q� , �9�

where Ip and 
p are the current and chemical potential in the
terminal p; and Tpq denotes the transmission coefficient from
the terminal q to the terminal p. Here h is the Plank constant
and e is the electronic charge.

For our four-terminal system, if the sample �in the ab-
sence of a magnetic field� has a mirror-symmetry axis along
the line y=a /2 �see Fig. 1�, then the wave function must also
be symmetric so that the currents as well as their chemical
potentials in terminals 2 and 4 are identical. A voltage be-
tween terminal 2 and terminal 4 occurs only in the presence
of a magnetic field. We will consider only the symmetric
geometries so that at zero magnetic field the Hall effect also
vanishes. Below we show that the Landauer-Büttiker formula
can tell us how the transmission coefficients Tpq’s are related
to the voltage at each terminal.

For simplicity, we set terminal 3 as the ground, i.e., V3
=0. Then Eq. �9� can be expressed as

�I1

I2

I4
� =

2e2

h �T13 + T14 + T12 − T12 − T14

− T21 T23 + T21 + T24 − T24

− T41 − T42 T43 + T41 + T42
� · �V1

V2

V4
� . �10�

FIG. 2. �Color online� Electron wave function in a four-terminal
system �a� with and �b� without the magnetic field. The real part of
the wave function is drawn as a contour plot �left� and as a 3D plot
�right�. Sample size a=40 nm, Fermi wavelength �F=20.02 nm.
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From Eq. �10� we obtain the relations between voltage Vj
and current Ij as follows. Set terminal 2 and 4 as the voltage
probes. That means I2= I4=0. Under this condition, the lon-
gitudinal resistance Rxx �Rxx=Vx / Ix=V1 / I1� and the Hall re-
sistance Rxx �Rxy =Vy / Ix= �V2−V4� / I1� can be obtained by in-
verting the above matrix equation so that

�V1

V2

V4
� = �R11 R12 R14

R21 R22 R24

R41 R42 R44
� · �I1

I2

I4
� . �11�

With I2= I4=0, we have

V2 = R21I1,

V4 = R41I1.

From which it is seen that

Rxy =
V2 − V4

I1
= R21 − R41, �12�

and

Rxx =
V1

I1
= R11. �13�

The other two tensors Ryy and Ryx can obtained similarly by
setting terminals 1 and 3 as the voltage probes with the elec-
tron wave passing from terminal 2 to terminal 4 �I1= I3
=0 , I2=−I4�. Some simple algebra leads to

Ryx =
V1

I2
= R12 − R13, �14�

and

Ryy =
V2 − V4

I2
= �R22 − R23� − �R32 − R33� . �15�

Below we use these approaches to first evaluate the Hall
effect in a homogeneous sample. That would set the stage for
the subsequent consideration of quantum interference effect
in patterned samples.

III. MESOSCOPIC HALL EFFECT
IN A HOMOGENEOUS SAMPLE

We first evaluate, for a homogeneous square sample �with
no scattering potential�, the transmission coefficients for a
single incident mode. The results are shown in Fig. 3. Here
the size a=200 nm, Fermi wavelength �F=12.28 nm �EF
=0.01 eV�, and the magnetic field B=0.1 T. The grid num-
ber Na in this section is 200, which is large enough to
achieve accurate results. There are a total of 32 ��2a /�F�
=32� guided modes. From the figure it is seen that with
increasing mode index, T13 decreases while T12 and T14 in-
crease. Also the difference between T12 and T14 decreases for
the larger mode index. Thus the transmission asymmetry in-
duced by a magnetic field is larger for the low-lying modes
than that for the high-lying modes. These relations can be
explained semiclassically as follows.

The eigenmode in a 2D electron waveguide may be writ-
ten as eikxx sin�n�y /b�. Here kx=�k0

2− �n� /b�2, k0
2

=2mEF /�2, where b is the waveguide width, n is an integer
for the mode index, and the waveguide axis is along the x
direction. The eigenfunction can be rewritten as �exp�ikxx
+ i�n�y /b��−exp�ikxx− i�n�y /b��� /2i so that the mode may
be viewed as the superposition of two plane waves with
wave vectors �kx ,n� /b� and �kx ,−n� /b�. These two plane
waves constitute two obliquely propagating “rays” that re-
peatedly reflect from the two sides of the waveguide �see
Fig. 4�a1��. This picture is identical to the ray model used in
optical waveguides.9 At the open port of the waveguide, the
two rays escape �Fig. 4�a2��, and for the low-lying mode
with its smaller reflection angle �the ray’s direction is deter-
mined by wave vector k� : �kx ,n� /b� and �kx ,−n� /b��, most
of the wave is injected into the opposite terminal 3 �Fig.
4�b1��. This implies a large T13 and a small T12�T14� �see Fig.
3�. With a magnetic field, we can see that the electron flow
injected into terminal 4 �T14� decreases and the electron flow
into terminal 2 �T12� increases greatly �see Fig. 4�b2��. This
large change is due to the fact that both T12 and T14 are small
when B is zero so even a small percentage deviation from the
large forward flow �T13� can greatly change the relative pro-
portion between T12 and T14. With a similar analysis, we can
see that for a high-lying mode with its larger boundary re-
flection angle most of the outgoing wave from terminal 1
would spread into terminal 2 or terminal 4 with equal likeli-
hood �Fig. 4�c1��. Only a little bit goes to terminal 3. This
agrees with the large T12�T14� value and a small T13 as shown
in Fig. 3. In a magnetic field that is not too large, the per-
centage change in T12 and T14 is small since most of the
wave �rays� is already spread into terminals 2 and 4, and a
small Lorentz force cannot alter that too much. This is made
clear in Fig. 4�c2�.

This semiclassical description omits some detailed inter-
ference effect that can lead to a much more complicated
phenomenon in a four-terminal system. These rays can only
approximately describe the motion of the electron waves and
give a qualitative description for a large-sized system such as
the 32-mode waveguide we just discussed.

0 5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

mode index

T
13

T
12

T
14

T

FIG. 3. �Color online� Transmission coefficients for different
incident modes in a 32-mode square homogeneous sample �a
=200 nm, �F=12.28 nm, and B=0.1 T�.
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When the sample size is as small as the electron’s Fermi
wavelength, the above semiclassical conclusion �that a low-
lying mode has a large transmission difference �T12−T14�� is
no longer always true. In such cases T12 may be very close to
T14, or T12 may even be less than T14, which means Hall
quenching or reverse Hall response �see the Hall coefficient
in Fig. 5� can arise �from the wave interference effect�.10

By using the approach described in Sec. II, we have cal-
culated the Hall coefficient for a square sample with different
sample size �a� and a fixed Fermi wavelength ��F�. The re-
sults are shown in Fig. 5. Here �F=78 nm, corresponding to
the electron density n=1.03�1011 cm−2. The magnetic field
is 0.01T. The simulation results are noted to agree well with
that in the literature.10 In the figure we can see that when the
a /�F ratio is near 0.8, RH is very close to zero. It can even be
negative within a small range. This is the Hall quenching
regime. When the sample size is small, RH exhibits an oscil-
latory behavior that eventually increases beyond the classical
value when a /�F→0.5. When a /�F is very large the oscil-
lations tend to disappear with RH approaching an asymptotic
constant, approximately the classical value �ne�−1 indicated
by the dashed line. There are cusps at a /�F
=0.5,1.0,1.5, . . . which result from the sudden appearance of
an additional guided mode when a /�F passes N /2 �N is an
integer�.11

IV. HALL EFFECT IN 2DEG WITH NANO-
STRUCTURED PATTERNS

From the results in the previous section we see that the
size of a mesoscopic sample can influence the Hall coeffi-
cient. In this section we show that the quantum interference
effect can significantly enhance the Hall effect by nanopat-
terning the sample when a /�F is on the order of 1.

A. Quality factor Q

To maximize the Hall effect, it is noted that RH ·B
=Rxx ·VH /V0, where VH denotes the Hall voltage and Vo
the longitudinal voltage. A large RH can result from either
a large Rxx or a large VH /V0, or both. By focusing on the
interference effect induced by the magnetic field to the lead-
ing order, we define a dimensionless quality factor Q

= �VH /V0��B̃�−1, where B̃ is the dimensionless scaled mag-

netic field from Eq. �1�, i.e., B̃=B�F
2 /0, where 0=h /e is

the quantum magnetic flux. So the quality factor is

Q = �VH/V0��B�F
2 /0�−1. �16�

This Q is invariant with respect to the simultaneous variation
in sample size �L→KL� and the Fermi wavelength ��F
→K�F�. This quality factor essentially discounts the Hall-
coefficient variation due to the longitudinal resistance.

B. Optimization with random selection

Using this quality factor as our merit function, we attempt
to maximize the Q value with respect to the sample configu-
ration in which certain regions are blocked �e.g., by a high
potential V�. We constrain our search to those patterns that
are symmetric with respect to y=a /2 �see Fig. 1�, so as to
ensure zero transverse voltage at zero magnetic field. In other
words, this symmetric microstructure can ensure the off-
diagonal terms in the resistivity tensor are antisymmetric
�which vanish at zero magnetic field�, without any symmetric
off-diagonal components of the resistivity tensor. We show
that for special sample configurations, the quality factor Q
can be increased significantly beyond the classical value. To

FIG. 4. �Color online� Semiclassical �ballistic� description of
mesoscopic electron transport in a four-terminal system. �a1� Two
rightward propagating rays in a waveguide. �a2� The rays escape
from the waveguide port. �b1� Low-lying mode with B=0. �b2�
Low-lying mode under a magnetic field. �c1� High-lying mode with
B=0. �c2� High-lying mode under a magnetic field.
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FIG. 5. Hall coefficient plotted as a function of a /�F for a
square mesoscopic sample. �F is fixed at 78 nm, corresponding to
an electron density of 1.03�1011 cm−2. The corresponding classi-
cal value of RH is 6.05�103 m2 /C, delineated by the dashed line.
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facilitate the search for such optimal configurations, we dis-
cretize the square sample into a 10 by 10 �or 20 by 20� grid.
In each grid cell the potential can be either low �V=0� or
high �a large positive value for V�. So the potential pattern
can be represented by a 2D grid matrix, which can be further
mapped into a 1D binary array. There are many ways to find
the pattern �binary array� with an optimal Q value. In this
section we report the results where the patterns �binary ar-
rays� were randomly generated. We have calculated VH /V0
�or Q value� for each configuration and tried to isolate the
one with the largest quality factor.

In the calculations, the sample size a=200 nm and the
Fermi wavelength is 140.1 nm. For this Fermi wavelength
and sample size in a homogeneous sample, Rxy �or Q value�
is nearly zero, owing to the Hall quenching effect. For a
small size of the obstacle �about 1/7 of the Fermi wave-
length� with a relatively low potential �V=6.5EF�, the tun-
neling effect has to be taken into account in the calculations.
The grid number in the following calculations is 100, which
is large enough for numerical convergence. Figure 6 shows
one of the optimized patterns, its wave-function distribution
�without magnetic filed�, and the VH /V0 dependence on the
magnetic field B. With B=0.01 T, VH /V0 for this configura-
tion is 0.085. From the definition before, the Q value is 1.78.
For the VH /V0 dependence shown in Fig. 6�d�, the Hall volt-
age dependence is linear in B in the limit of small magnetic
field but displays a saturation behavior when B is large.

It should be noted that the configuration with the high Q
value is very sensitive to small changes in its geometry. A
small change in the position of one potential obstacle would
decrease the Q value significantly.

In Fig. 6 the wave-function density is noted to be high in
the center of the sample. In other words, the electron wave is

nearly localized in the sample. From a classical point of view
we can explain why this can yield a high Q value. When an
electron wave is localized, the group velocity is very small.
Also from the equation of motion for an electron in a mag-
netic field: mv2 /R=qvB, we can see that R is sensitive to the
velocity—a small velocity implies a small �bending� radius.
This sensitivity makes the downward transmission T12 �due
to Lorentz force� much larger than the upward transmission
T14. From the Büttiker formula, Rxy is proportional to T12
−T14. So such wave-function density distribution can lead to
a large Rxy and a large Q value.

C. Optimization with the genetic algorithm

In order to accelerate the optimization process, we resort
to the genetic algorithm �GA�.12 This method originates from
the analogy to biological evolution. A set of initial patterns
�or the binary arrays� is generated randomly as the first gen-
eration. Each pattern is calculated for its Q value and those
with high Q values are retained. The selected patterns would
then “mate” with each other to “reproduce” their offspring
patterns. Figure 7�a� shows such mating process. The two
parent patterns have part of their gene codes �the strings in
the frame� crossed over �or exchanged� to form the two chil-
dren codes. These new codes are then mapped back to the 2D
matrices for the children patterns, which is shown in Fig.
7�b�. Besides crossover, there is also the mutation process,
which means that some of the binary element changes from
“0” to “1” or from “1” to “0.” Other types of mutation in-
clude the insertion or deletion of some part of the genetic
code. Crossover can exchange some characteristics of their
parents and transfer the new combinations of genetic infor-

FIG. 6. �Color online� An optimal pattern from obtained from
random selection. �a� The contour plot of the wave-function density.
�b� The 3D plot of the wave-function density. �c� The optimal po-
tential pattern �black blocks refer to the high potential regions�. �d�
VH /V0 dependence on the B field. Here the sample size a
=200 nm, �F=140.1 nm, and B=0.01 T.

FIG. 7. �Color online� Genetic algorithm and the optimization
process. �a� One of the reproduction procedures in GA: crossover.
�b� The two parent patterns �left� and their children patterns �right�
from crossover. �c� The results from one GA searching process. The
parameter values are sample size a=200 nm, �F=140.1 nm, B
=0.01 T, grid number Na=100, and potential V=6.5 EF. �d� An
optimized case from the GA search. The left panel is the potential
pattern and the right panel shows the contour plot of the wave-
function density.
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mation into their offspring patterns �compare the similarities
between the parents and children patterns in Fig. 7�b��. There
is a high probability that some children patterns may share
the “good” characteristics of both their parents so they may
have better quality factors. In the next step, these good chil-
dren patterns are selected as the parent patterns for the next
generation. Such mate-selection procedures are repeated
again and again until a high Q value is achieved �see Fig.
7�c��. The aim of mutation is to maintain genetic diversity by
random perturbations. From Fig. 7�c� we see that when the
generation number is large enough, the highest Q values of-
ten cycle among several fixed values. These values may be in
some local optimal regimes. Only with a larger searching
scope in each generation �limited by the computation capac-
ity� or proper mutation can this saturation phenomenon be
effectively avoided.

Figure 7�d� shows one such optimal pattern obtained from
a GA search with a=200 nm, �F=140.1 nm, and an ob-
stacle potential V0=6.5EF. It can be seen that the wave is
again localized in the center of the sample. With B=0.01 T,
we have VH /V0=0.091 and Q=1.92 for this optimal pattern.

We have also carried out a search using a much higher
potential �V=65EF, like a hard wall� for the obstacles. This is
a more realistic choice since experimentally the high poten-
tial obstacles can be easily realized by etching holes in the
semiconductor heterostructures. The electron density n
=1.03�1011 cm−2 was used in these calculations, with a
corresponding Fermi wavelength �F=78 nm. Many GA
search runs were carried out with 1–3 guided modes. Since
the initial patterns in the GA search have an influence on the
final optimal Q values, a large number of patterns were ini-
tialized in each search run. Figure 8 shows the optimal pat-
terns �left� and the corresponding wave-function density con-
tours �right�. Table I. gives a summary of the related
parameter values for these optimal patterns.

It should be noted that in contrast to the optimal patterns
in the previous cases �Fig. 6�a� and Fig. 7�d��, the first two
optimal patterns here belong to the “side potential” type.

Such potential patterns do not localize electron waves in the
center. They pass most of the electron waves directly through
the sample and only influence them at the two side regions.
This is clearly another quantum interference strategy to
achieve a large VH /V0 value.

When obstacles of such optimal patterns are slightly
moved, VH /V0 may be further increased. In the three-mode
case, the new pattern and the corresponding wave-function
density contours are shown in Fig. 8�d�. The voltage ratio
here is 0.070 and Q=4.75. This modification from the pattern
shown in Fig. 8�c� is equivalent to a small perturbation in a
fine-grid configuration space around the optimal pattern. Due
to our computational limit, we only searched a small range of
such slight movements so as to give an example.

In the above we have predicted the optimal GHE patterns
for single nanostructured patterns. It is entirely possible that
assembling different nanopatterns into a macroscopic sample
can lead to further enhancement. Such studies are left for
future explorations.

V. CONCLUDING REMARKS

We have numerically evaluated the mesoscopic Hall ef-
fect for both homogeneous and nanostructured 2D samples.
By using the genetic algorithm, we have obtained some op-
timal structures with large Q values arising from the quan-
tum interference effect. To give some perspective on the
magnitudes of the effect, in Table II we present a comparison
between the Hall parameters of metal, homogeneous hetero-
structure and our optimized nanostructured samples.

In Table II, both RH
2D and Rxx for the silver sample are

calculated classically. �Rxx is obtained from the Ohm’s law,
and Rxy is obtained from the relation Rxy =B ·RH

2D, with RH
2D

=1 / �n2De�.� For the homogeneous semiconductor hetero-
structure and its nanostructured counterpart, Rxx and RH

2D are
obtained from the mesoscopic calculations. Since the Q
value is only used for mesoscopic calculations, case �1� does
not have a Q value. We can compare only the ratio VH /V0. It
is seen that the metal case has a very much smaller VH /V0. It
is also seen that RH for the patterned samples �Fig. 8�d�� can
be up to �500% larger.

We note that while the enhancement factor in the present
case is not too large, the absolute value of the Hall coeffi-
cient is orders of magnitude larger than the metallic system.
As much of that difference arises from the difference in the
resistivity of the difference material systems, it is proposed
that the VH /V0 ratio, used in this work as the controlling

FIG. 8. �Color online� The optimal pattern �left panel� and the
wave-function density contours �right panel�. �a� One-mode case,
Q=3.40, �a=75 nm,�F=78 nm�. �b� Two-mode case, Q=3.20,
�a=111.4 nm,�F=78 nm�. �c� Three-mode case, Q=3.26, �a
=150 nm,�F=78 nm�. �d� Three modes case with a slightly modi-
fied pattern, Q=4.75, �a=150 nm,�F=78 nm�.

TABLE I. Parameter values for the optimal patterns shown in
Fig. 8 �3� denotes the micro-optimized pattern based on sample 3�.

Mode number
a

�nm�
�F

�nm� VH /V0�B=0.01 T� Q

1 75.0 78.0 0.050 3.40

2 111.4 78.0 0.047 3.20

3 150.0 78.0 0.048 3.26

3� 150.0 78.0 0.070 4.75
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quality factor, should constitute a better unifying parameter
to compare the Hall effect in different systems.
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APPENDIX A: EIGENMODES CALCULATION
IN A WAVEGUIDE WITH MAGNETIC FIELD

From Sec. II we know that for the waveguide solution

�=eik·x��y� under a magnetic field �with Landau gauge A�

= �By ,0 ,0��, ��y� satisfies the differential equation

−
d2��y�

dy2 + ��k − P · y�2 − k0
2���y� = 0. �A1�

To obtain the eigenfunction �n�y� under some specified
boundary conditions, we use the eigenbasis expansion
method. We choose the expansion basis as the sine functions
��sin�n�y /a��, with a being the terminal width� because they
naturally satisfy the boundary conditions ��0�=��a�=0.
Hence we write

��y� = �
n=1

N

Fn sin	n�

a
y
 . �A2�

By substituting Eq. �A2� into Eq. �A1� and making the de-
rivative operation with some rearrangement, we obtain

P2�
n=1

N

Fn · y2 sin	n�

a
y
 − 2kP�

n=1

N

Fn · y sin	n�

a
y


+ �k2 − k0
2 + 	n�

a

2��

n=1

N

Fn sin	n�

a
y
 = 0. �A3�

Multiplying sin�m�y /a� on two sides of Eq. �A3� and inte-
grating from 0 to a yield

�
n=1

N

AmnFn = 0, �A4�

where

Amn = P2 · Pmn − 2Pk · Qmn + k2�mn + �k0
2 − �n�/a�2��mn,

with

Pmn =
2

a
�

0

a

y2 sin	n�

a
y
sin	m�

a
y
dy ,

and

Qmn =
2

a
�

0

a

y sin	n�

a
y
sin	m�

a
y
dy .

In Eq. �A4� the matrix A is noted to contain the eigenvalue k.
The matrices Pmn and Qmn can be expressed analytically for
specified m and n. Only when the secular determinant det�A�
is zero can there be nontrivial solutions of �Fn�, so as to
ensure A�k�F=0. This is the condition for finding the eigen-
value kn. Since det�A�=�i=1

N �i, where �i is the eigenvalue of
A,13 we need to calculate all the �i and test if their product is
zero for some k. Numerically, as k passes through an eigen-
value, there is always one �i which is very close to zero �in
the real number case it changes sign�. This condition is used
to find the eigenvalue kn. By substituting kn into A �Eq.
�A4��, we obtain F and the eigenfunction �n�y�.

It should be noted that in the presence of a magnetic field
the eigenvalues and eigenfunctions in the rightward propa-
gating solution are not the same as those in the leftward
propagating solution. We denote kr�n� and �n�y� as the ei-
genvalue and eigenfunction, respectively, for the rightward
propagating wave and kf�n� and �n̄�y� for the leftward propa-
gating wave. Hence the eigensolutions in the two directions
are eikr�n�·x�n�y� and e−ikf�n�·x�n̄�y�.

In terminals 2 and 4, the general solution is ��2,4��x ,y�
=e�ik·y��x�. In order to separate the variables, another gauge

A� = �0,−Bx ,0� has to be used in the Schrödinger equation.
The differential equation for ��x� becomes �for ��2��x ,y�
=e−ik·y��x��

−
d2��x�

dx2 + ��k − P · x�2 − k0
2���x� = 0. �A5�

Equation �A5� is almost the same as Eq. �A1�, only with y
replaced by x. We may be tempted to use the eigenfunction
in Eq. �A1� �i.e., �n�y�� as the solution of Eq. �A5�, and that
would give

TABLE II. Comparison of some Hall-effect-related quantities for different samples, all in the square
geometry. The first row is for a silver sample with a=1 mm, t=1 
m, T=300 K. The second row is for a
semiconductor heterostructure with n=1.0�1011 cm−2, a=150 nm, t=50 nm, T=10 K. �It is a homoge-
neous sample�. The third row is for the same semiconductor heterostructure as shown in the second row, but
with optimized nanostructure pattern shown in Fig. 8�c�, with n=1.0�1011 cm−2, a=150 nm, and T
=10 K.

Materials
n2D

�cm−2�
RH

2D

�m2 /C�
Rxx

�Ohm� VH /V0�B=0.01 T� Q

Ag�1� 5.8�1018 0.9�10−4 1.6�10−2 0.56�10−4

AlGaAs /GaAs�2� 1.0�1011 8.8�103 6.0�103 0.015 1.01

GHE nanopattern�3� 1.0�1011 4.0�104 8.9�103 0.048 3.26
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��2��x,y� = e−ikr�n�·y�n�x� , �A6�

which is wrong because the gauge here is not the same. We
must use the gauge transformation to transform Eq. �A6�
back to the previous gauge �By ,0 ,0� �Refs. 14 and 15�,

A� 1 = A� 0 + �� � , �A7�

��A� 1� = ��A� 0� · exp	i
e

�
�
 . �A8�

For our problem, ��A� 0� is the wave function in Eq. �A6�,
A� 0= �0,−Bx ,0�, and ��A� 1� is the correct wave function in

terminals 2 and 4. Here A� 1= �By ,0 ,0� and �� �= �By ,Bx ,0�.
So �=Bxy, and Eq. �A8� can be written as

��2,4��A� 1� = ��2,4��A� 0� · exp	i
eB

�
xy
 . �A9�

By substituting Eq. �A6� �with gauge A0� into Eq. �A9�, we
obtain

��2��A1� = e−ikr�n�·y�n�x� · eiPxy ,

where P=eB /�. For simplicity in calculation, we merge
�n�x� and exp�iPxy� in the above formula into a “new eigen-
function,” denoted �n̄��x ,y�,

�n̄��x,y� = �n�x� · e�iP·xy�. �A10a�

So the correct wave function in terminal 2 is

��2��x,y� = e−ikr�n�·y�n̄��x,y� . �A10b�

Similarly, we define a new eigenfunction �n��x ,y� in terminal
4 as

�n��x,y� = �n̄�x� · e�iP·xy�, �A11a�

and the wave function in terminal 4 is given by

��4��x,y� = eikf�n�·�y−a��n��x,y� . �A11b�

Hence eikr�n�·x�n�y�, e−ikf�n�·�x−a��n̄�y�, e−ikr�n�·y�n̄��x ,y�, and
eikf�n�·�y−a��n��x ,y�

are the eigenmode solutions in the four terminals.

APPENDIX B: TRANSMISSION
COEFFICIENT CALCULATION

When the eigenmode expansion coefficients �like �An��
are obtained, we can calculate the transmission coefficients
by starting from the flux of electron wave in the presence of
a magnetic field,15

j� =
�

me
Im���	− �� +

ie

�
A�
�� , �B1�

where me is the electron mass �to distinguish it from the
index m�. Here Im� � means the imaginary part of a complex

number. For example, in terminal 3, with A� = �By ,0 ,0�, the x
component of the flux is given by

jx =
�

2me
����− i�x − Py�� + ��i�x − Py���� . �B2�

By substituting the corresponding solution in terminal 3, i.e.,
�=�n

N1Bnn ���=�n
N1Bn

�n
�� into the above formula, we ob-

tain

jx = j1 + j2,

where

j1 =
�

2me
�

n

M

�
m

M

n
��− i�x − Py�m · Bn

�Bm, �B3a�

j2 =
�

2me
�

n

M

�
m

M

n�i�x − Py�m
� · BmBn

�, �B3b�

and n=�n�y� ·eikr�n�x, M is the number of guided modes, and
the evanescent modes have no contribution to the flux. By
substituting the expression for n into Eq. �B3� and carrying
out the partial derivative, we obtain

jx =
�

2me
�

n

M

�
m

M

�n�y��kr�n� + kr
��m�

− 2Py��m
� �y� · BmBn

�ei�kr�n�−kr
��m��x. �B4�

Integration of jx from y=0 to y=a yields the total flux. In the
integration, the following orthogonal relation was used:

�
0

a

�n�y��kr�n� + kr
��m� − 2Py��m

� �y� · dy = Np�n��n,m,

�B5�

where Np�n� �Nq�n�� denotes the normalization constant for
the nth eigenfunction �n�y� ��n̄�y�� of Eq. �2�.16 This relation
can be obtained from the Sturm-Liouville theory. Finally, the
total rightward flux is given by

Jx
right =

�

2me
�
n=1

M

Bn2Np�n� . �B6�

Similarly, for the left-propagating eigenfunction �n̄�y�, the
orthogonal relation is given by

�
0

a

�n̄�y��kf�n� + kf
��m� + 2Py��n̄

��y� · dy = Nq�n��n,m.

�B7�

Also the total leftward flux may be expressed as

Jx
left =

�

2me
�
n=1

M

An2Nq�n� . �B8�

By using these results, it is easy to get the transmission and
reflection coefficients for the rightward incident wave with
mode n,

T�n� = �
m=1

M

Bm
n 2

Np�m�
Np�n�

, �B9�
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R�n� = �
m=1

M

Am
n 2

Nq�m�
Np�n�

. �B10�

In general, the transmission coefficient from port i to port j
may be expressed as

Tij = �
m

M

�
n

M

Pnm
ij 2 ·

Np�m�
Np�n�

, �B11�

where Pnm
ij are the matrix elements coupling mode n in the

incident port i to mode m in port j.
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